Año 2021 / Volumen 32 / Número 2

Artículos Originales

Análisis cinemático de la articulación de tobillo y las articulaciones del mediopié en población pediátrica afectada de osteogénesis imperfecta
Kinematic analysis of ankle and midfoot joints in children with osteogenesis imperfecta

Rev. Esp. Pod. 2021; 32(2): 99-105 / DOI: 10.20986/revesppod.2021.1603/2021

Ester Sánchez Márquez, Jorge Gómez Triguero, María Teresa Arribas Cordero, Ignacio Martínez Caballero, Sergio Lerma Lara


RESUMEN

Objetivos: La osteogénesis imperfecta (OI) es una enfermedad de origen genético que afecta a la síntesis del colágeno de tipo I y se caracteriza por la existencia de una fragilidad ósea persistente. El objetivo de este estudio fue evaluar objetivamente la cinemática de la articulación del tobillo y el pie de niños con osteogénesis imperfecta mediante un análisis tridimensional de movimiento.
Pacientes y métodos: Se comparó la marcha de diez niños con OI y nueve niños con desarrollo típico. Se realizó un análisis de movimiento tridimensional utilizando el modelo de pie de dos segmentos para cuantificar las diferencias cinemáticas en los planos sagital y transversal del movimiento de la articulación del tobillo y del pie durante la marcha.
Resultados: La amplitud de movimiento dinámico en el plano sagital, aunque estadísticamente significativa, no lo fue clínicamente. Sin embargo, la amplitud de movimiento dinámico de la articulación del mediopié (antepié en relación con el retropié) en el plano sagital y transversal mostró hipermovilidad, siendo clínicamente relevantes las variables relacionadas con la alteración de la biomecánica articular del pie y las variables espaciales y temporales de la marcha.
Conclusiones: Los niños con osteogénesis imperfecta estudiados presentan alteraciones cinemáticas a nivel del tobillo y el mediopié consistentes en un aumento de la movilidad tanto en el plano sagital como en el plano transverso.



ABSTRACT

Objectives: Osteogenesis imperfecta (OI) is a genetic disease affecting the synthesis of type I collagen molecules and is characterized by the existence of persistent bone fragility. The aim of this study was to assess objectively the kinematics of the ankle joint and foot of children with osteogenesis imperfecta by three-dimensional motion analysis.
Patients and methods: The gait of ten children with OI and nine typically developing children were compared. Three-dimensional motion analysis was performed using the Multisegment Foot Model to quantify kinematic differences in the sagittal and transverse planes of motion of the ankle joint and foot during walking.
Results: The dynamic range of motion in the sagittal plane while statistically significant was not clinically relevant. However, the midfoot joint (forefoot relative to hindfoot) dynamic range of motion in the sagittal and transverse plane showed hypermobility, with variables related to altered joint biomechanics of the foot and spatial and temporal variables of gait being clinically relevant.
Conclusions: The children with Osteogenesis Imperfecta studied had kinematic alterations at the level of the ankle and midfoot consisting of increased mobility in both the sagittal and transverse planes.


Nuevo comentario

Código de seguridad:
CAPTCHA code image
Speak the codeChange the code
 

Comentarios

No hay comentarios para este artículo.

Bibliografía

1. Antaniazzi F, Mottes M, Fraschini P, Brunelli PC, Tató L. Osteogenesis imperfecta. Practical treatment guideline. Paediatr Drugs. 2000;2(6):465-88.
2. Monti E, Mottes M, Fraschini P, Brunelli PC, Forlino A, Venturi G, et al. Current and emerging treatments for the management of osteogenesis imperfecta. Ther Clin Risk Manag. 2010;6:367-81.
3. Sillence D. Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop. 1981;(159):11-25.
4. Jeanne M, Suken A, Wallace MJ, Kruse RW. Osteogenesis Imperfecta A Pediatric Orthopedic Perspective. Orthop Clin North Am. 2019;5(2):193-209.
5. Marini JC, Forlino A, Bächinger HP, Bishop NJ, Byers PH, Paepe A, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.
6. Brownstein CA, Wicks P. The potential research impact of patient reported outcomes on osteogenesis imperfecta. Clin Orthop Relat Res. 2010;468(10):2581-5.
7. Shapiro JR. Osteogenesis imperfecta and other defects of bone development as occasional causes of adult osteoporosis. In: Marcus R, Feldman D, Nelson D, Rosen CR, eds. Osteoporosis. San Diego: Elsevier Academic Press; 2007.
8. Basel D, Steiner RD. Osteogenesis imperfecta: Recent findings shed new light on this once well-understood condition. Genet Med. 2009;11(6):375-85.
9. Hill C, Hampshire D, Silverwood B, Bishop NJ. Recent advances in the management of osteogenesis imperfecta. Current Paediatrics. 2003;13(2):151-7.
10. Cheung MS, Glorieux FH. Osteogenesis imperfecta: Update on presentation and management. Rev Endocr Metab Disord. 2008;9(2):153-60.
11. Bauze RJ, Smith R, Francis MJ. A new look at osteogenesis imperfecta. A clinical, radiological and biochemical study of forty-two patients. J Bone Joint Surg Br. 1975;57(1):2-12.
12. Engelbert RH, Beemer FA, Van Der Graaf Y, Helders P. Osteogenesis imperfecta in childhood: impairment and disability: a follow-up study. Arch Phys Med Rehabil. 1999;80(8):896-903.
13. Deschamps K, Staes F, Roosen P, Nobels F, Desloovere K, Bruyninckx H, Matricali GA. Body of evidence supporting the clinical use of 3D multisegment foot models: A systematic review. Gait Posture. 2011;33(3):338-49.
14. Davis RB, Jameson EG, Davids JR, Christopher LM, Rogozinski BM, Anderson JP. The design, development, and initial evaluation of a multisegment foot model for routine clinical gait analysis. In: Harris GF, Smith PA, Marks RM, eds. Foot and Ankle Motion Analysis. Clinical Treatment and Technology. United States of America: Taylor and Francis Group; 2008. p. 425-45.
15. Madjarevic M, Kolundzic R, Trkulja V, Mirkovic M, Pecina M. Biomechanical analysis of functional adaptation of metatarsal bones in statically deformed feet. Int Orthop. 2009;33(1):157-63.
16. Root ML. Planovalgus foot deformity revisited. J Am Podiatr Med Assoc. 1999;89(5):268-9.
17. Whitman R. A study of the weak foot, with reference to its causes, its diagnosis, and its cure; with an analysis of a thousand cases of so-called flat-foot. Clin Orthop Relat Res. 2010;468(4):925-39.
18. Madjarevic M, Kolundzic R, Trkulja V, Mirkovic M, Pecina M. Biomechanical analysis of functional adaptation of metatarsal bones in statically deformed feet. Int Orthop. 2009;33(1):157-63.
19. Root ML. Planovalgus foot deformity revisited. J Am Podiatr Med Assoc. 1999;89(5):268-9.
20. Caudill A, Flanagan A, Hassani S, Graf A, Bajorunaite R, Harris G, et al. Ankle strength and functional limitations in children and adolescents with type I Osteogenesis Imperfecta. Pediatr Phys Ther. 2010;22(3):288-95.
21. Theologis T. Lever arm dysfunction in cerebral palsy gait. J Child Orthop. 2013;7(5):379-82).
22. Martínez Caballero I, Lerma Lara S, Ferullo M, Ramírez Barragán A, Castillo Sanz A. Cirugía multinivel para las alteraciones de la deambulación en parálisis cerebral infantil. Evaluación cuantitativa, funcional y de s. Trauma. 2013;24(4):224-9.
23. Graf A, Hassani S, Krzak J, Caudill A, Flanagan A, Bajorunaite R, et al. Gait characteristics and functional assessment of children with type I osteogenesis imperfecta. J Orthop Res. 2009;27(9):1182-90.
24. Jafarnezhadgero A, Madadi-Shad M, Alavi-Mehr SM, Granacher U. The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet: A randomized controlled trial. PLoS One. 2018;13(10):e0205187.
25. Galafate D, Pournajaf S, Condoluci C, Goffredo M, Di Girolamo G, Manzia CM, et al. Bilateral Foot Orthoses Elicit Changes in Gait Kinematics of Adolescents with Down Syndrome with Flatfoot. Int J Environ Res Public Health. 2020;17(14):4994.
26. Kulcu DG, Yavuzer G, Sarmer S, Ergin S. Immediate effects of silicone insoles on gait pattern in patients with flexible flat foot. Foot Ankle Int. 2007;28(10):1053-6.
27. Kulig K, Reischl SF, Pomrantz AB, Burnfield JM, Mais-Requejo S, Thordarson DB, et al. Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercise: A randomized controlled trial. Phys Ther. 2009;89(1):26-37.
28. Kamiya T, Uchiyama E, Watanabe K, Suzuki D, Fujimiya M, Yamashita T. Dynamic effect of the tibialis posterior muscle on the arch of the foot during cyclic axial loading. Clin Biomech (Bristol, Avon). 2012;27(9):962-6.
29. Lee DR, Choi YE. Effects of a 6-week intrinsic foot muscle exercise program on the functions of intrinsic foot muscle and dynamic balance in patients with chronic ankle instability. J Exerc Rehabil. 2019;15(5):709-14.
30. Lynn SK, Padilla RA, Tsang KKW. Differences in Static-and Dynamic-Balance Task Performance After 4 Weeks of Intrinsic-Foot-Muscle Training: The Short-Foot Exercise Versus the Towel-Curl Exercise. J Sport Rehabil. 2012;21(4):327-33.
31. Sussman MD. J. R. Gage, M. H. Schwartz, S. E. Koop, T. F. Novacheck (eds): The identification and treatment of gait problems in cerebral palsy. J Child Orthop. 2010;42(2):177-8.

Artículos relacionados

Reflexiones sobre la torsión tibial externa y repercusiones en la biomecánica

Rev. Esp. Pod. 2022; 33(2): 128-133 / DOI: 10.20986/revesppod.2022.1652/2022

Reducción de presiones plantares dinámicas en el antepié plantar medial con calcetines biomecánicos

Rev. Esp. Pod. 2022; 33(2): 110-114 / DOI: 10.20986/revesppod.2022.1646/2022

El tiempo de apoyo durante la marcha en relación con la edad infantil: estudio observacional descriptivo

Rev. Esp. Pod. 2022; 33(1): 3-8 / DOI: 10.20986/revesppod.2022.1589/2020

Talectomía. A propósito de un caso

Rev. Esp. Pod. 2021; 32(2): 140-145 / DOI: 10.20986/revesppod.2021.1616/2021

Test de estudio biomecánico en niños y adolescentes: una revisión sistemática

Rev. Esp. Pod. 2021; 32(2): 132-139 / DOI: 10.20986/revesppod.2021.1611/2021

Determinantes mecánicos de los momentos adductores externos de rodilla durante la marcha en población sana

Rev. Esp. Pod. 2021; 32(1): 18-26 / DOI: 10.20986/revesppod.2021.1599/2021

Relación entre la flexión dorsal de tobillo y la flexibilidad de la columna medial

Rev. Esp. Pod. 2021; 32(1): 7-12 / DOI: 10.20986/revesppod.2021.1572/2020

Estudio sobre la efectividad de las ortesis plantares en las patologías más frecuentes del pie

Rev. Esp. Pod. 2020; 31(1): 16-23 / DOI: 10.20986/revesppod.2020.1557/2020

Efectos del vendaje Low-Dye sobre el pie. Revisión narrativa

Rev. Esp. Pod. 2019; 30(1): 38-52 / DOI: 10.20986/revesppod.2019.1526/2018

Valores normativos para determinar un pie plano o cavo

Rev. Esp. Pod. 2019; 30(1): 15-23 / DOI: 10.20986/revesppod.2019.1540/2019

Biomecánica en las AFOS. AFO PODIÁTRICAS.

Rev Esp Pod 2012;23:184-94

Modelo de estrés de tejidos. Aplicaciones clínicas en la patología del pie

Rev. Esp. Pod. 2018; 29(2): 101-112 / DOI: 10.20986/revesppod.2018.1531/2018

Cirugía del pie plano: una visión personal / Flatfoot surgery: a personal view

Rev Esp Podol. 2018;29(1):49-59 / DOI: 10.20986/revesppod.2018.1516/2018

Instrucciones para citar

Sánchez Márquez E, Gómez Triguero J, Arribas Cordero M, Martínez Caballero I, Lerma Lara S. Análisis cinemático de la articulación de tobillo y las articulaciones del mediopié en población pediátrica afectada de osteogénesis imperfecta. Rev Esp Pod 2021; 32(2): 99-105 / DOI: 1020986/revesppod20211603/2021


Descargar a un gestores de citas

Descargue la cita de este artículo haciendo clic en uno de los siguientes gestores de citas:

Métrica

Este artículo ha sido visitado 29391 veces.
Este artículo ha sido descargado 90 veces.

Estadísticas de Dimensions


Estadísticas de Plum Analytics

Ficha Técnica

Recibido: 29/04/2021

Aceptado: 17/06/2021

Prepublicado: 11/11/2021

Publicado: 28/12/2021

Tiempo de revisión del artículo: 47 días

Tiempo de prepublicación: 196 días

Tiempo de edición del artículo: 243 días


Compartir

Este artículo ha sido valorado por 3 lectores .
Valoración del lector:
Valora este artículo:
2024 Revista Española de Podología
ISSN: 0210-1238   e-ISSN: 2695-463X

      Indexada en: